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Direct numerical simulations of stably stratified homogeneous turbulence, with and
without mean shear, are used to investigate the three-dimensional structure, evolution
and energetic significance of density overturns. Although the flow conditions are
idealized, examination of the full-field simulation data provides insight into flow
energetics and mixing which may assist in the interpretation of physical measurements,
typically limited to one-dimensional vertical profiles. Overturns, defined here through
the density field as contiguous regions of non-zero Thorpe displacement, are initially
generated by the stirring action of coherent vortex structures present in the flow and
further develop through merging with adjacent overturns. During this growth phase,
overturns exhibit irregular spatial structure in unsheared flow and elongated structure
with distinct orientation in shear flow. Although most of the available potential
energy (APE) and buoyancy flux are associated with stable (non-overturning) regions
in the flow, young overturns actively contribute to the flow energetics. In particular,
overturn peripheries are sites of high levels of APE, buoyancy flux and diapycnal
mixing. A collapse phase may follow the growth phase in the absence of adequately
strong mean shear. During this phase, buoyancy gradually assumes control of the
overturns and their vertical scale steadily decreases. The energetic significance of the
overturns diminishes, although high APE and diapycnal mixing continue to occur near
their boundaries. In the final phase of their evolution, overturns contribute negligibly
to the energetics. The remaining overturns are characterized by a viscous–buoyant
balance which maintains their vertical scale. The overturns eventually vanish due to
homogenization of their internal density distribution by diffusion. Activity diagrams,
sampled at different points of flow evolution, show significant variation in overturn
Reynolds and Froude numbers which may have implications for vertical sampling of
a turbulent event.

1. Introduction
In stratified flows, overturns, i.e. regions where heavy fluid resides over light within

the same fluid column, are often viewed as indicators of where the turbulence has
overcome the stabilizing effect of the mean stratification and are thus considered
active sites of stirring and mixing. They have been the focal point in the study
of vertical transport and mixing in naturally stratified water bodies, particularly
in oceanic microstructure studies. Typical microstructure measurements consist of
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localized vertical profiles of temperature and salinity in which overturns are identified
as regions of non-zero Thorpe displacement, d(z), defined as the distance a fluid
particle is displaced when an observed density profile is rearranged to generate
a gravitationally stable profile (Thorpe 1977). Since these regions are associated
with mixing, they are used to estimate vertical diffusivities and energy dissipation
rates. The lack of complete time and space information in these complex flows
necessitates making assumptions which have led to variations in the interpretation of
the measurements. For example, some consider overturns as young, actively turbulent
events with high dissipation rates of turbulent kinetic energy and mixing (Gregg
1987; Hebert et al. 1992). An opposing school of thought (Gibson 1980, 1986, 1991)
considers overturns to be remnants (‘fossils’) of previous rare but powerful turbulence,
associated with negligible energy dissipation rates at the time of observation but
significant diapycnal mixing induced by the fossilized patterns in the density field.
In general, no concrete description exists of the three-dimensional structure and
dynamical evolution of overturns because the available data are mainly limited to
one-dimensional vertical profiles and single realizations of the events (Dillon 1984;
Moum 1996).

Controlled laboratory experiments on stratified homogeneous turbulence, the
simplest model for turbulence subject to stratification, can be used to provide a
better understanding of overturns. The pioneering work of Van Atta and coworkers
(Stillinger, Helland & Van Atta 1983; Itsweire 1984; Itsweire, Helland & Van Atta
1986; Rohr et al. 1988) was the first to experimentally study stratified homogeneous
turbulence, with and without background shear. This series of laboratory studies
recently culminated in the work of Keller & Van Atta (2000, hereafter referred to
as KVA) who carried out experiments in a stratified homogeneous shear flow of
air. Using an eight-point rake of temperature probes together with the frozen flow
hypothesis, KVA constructed two-dimensional temperature fields. Based on their
results, they proposed a generation mechanism of overturning based on vertical
advection of fluid lumps. However, without information on the underlying velocity
field, their description is inherently incomplete. High-resolution vertical temperature
profiles were obtained using a new rapid traversing system. These were used to
evaluate the Thorpe scale, 〈LT 〉 = 〈d(z)2〉1/2, which characterizes the vertical scale of
overturns. The streamwise development of 〈LT 〉 was examined for a range of gradient
Richardson numbers, Ri. For low Ri (weak stratification), 〈LT 〉 increases throughout
the evolution, indicating that the size of overturns continues to increase. For high Ri,
〈LT 〉 initially increases, decays slightly, then remains roughly constant. This led KVA
to deduce that, while the total energy of the flow continues to decay in the late stage
of evolution, it is the number of overturns that diminishes and not their size. It was
suggested that the minimum size could be related to a viscous cutoff; however this
could not be verified through their data.

The vertical profiles were also used to examine the energetics of the flow in terms
of the available potential energy, APE. The APE is defined as the excess of potential
energy in the flow with respect to the background state of potential energy, BSPE,
which is the state of minimum potential energy attained by the fluid if allowed to
restratify adiabatically (Winters et al. 1995). In KVA, the BSPE was determined by
reordering each individual profile, rather than a volume as may be done with full flow
field data (see Appendix A). In this case, by definition, the APE is associated only with
overturns (d(z) �= 0). KVA find that the APE is much less than the turbulent potential
energy, PE ≡ 0.5N2Lt

2 (N is the buoyancy frequency and Lt ≡ 〈ρ ′2〉1/2/dρ/dz is the
Ellison scale, where 〈ρ ′2〉1/2 and dρ/dz are the root-mean-square (r.m.s) value of the
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density perturbations and the mean density gradient, respectively), suggesting that
most of the temperature variance is associated with stable non-overturning regions.
In fact, for homogeneous stratified turbulent flows, PE is the same as the APE of the
flow (§ 4.2). The inaccurate evaluation of APE makes any deduction of the energetic
significance of stable and unstable regions uncertain.

The diapycnal flux (molecular mixing across isopycnal surfaces) was also obtained
using the background density from the reordered profiles. Although the experiments
provide further insight into the vertical structure of the temperature field, the limitation
of the measurements to vertical profiles and the lack of knowledge of the flow field
leave an incomplete description of overturns and various outstanding issues: What is
the three-dimensional spatial structure of overturns? What are the actual mechanisms
of their generation and decay? Are overturns necessarily associated with the APE in
the flow? What is their energetic significance and role in diapycnal mixing?

Direct numerical simulations (DNS) are advantageous as they provide detailed
temporal and spatial information. There have been a number of DNS studies of
homogeneous stratified turbulence. The majority of these studies have focused either
on the overall energetics of the flow (e.g. Riley, Metcalf & Weissman 1981; Gerz,
Schumann & Elghobashi 1989; Holt, Koseff & Ferziger 1992; Jacobitz, Sarkar &
Van Atta 1997; Shih et al. 2000) or on small-scale structure and derivative quantities
(Gerz, Howell & Mahrt 1994; Diamessis & Nomura 2000). The comparative evolution
of average lengthscales of overturning has been examined by Metais & Herring (1989),
Gerz & Schumann (1989b) and Itsweire et al. (1993). The latter study divided the
evolution of the overall flow into different regimes based on the fossil turbulence
theory of Gibson (1980, 1986, 1991). However, none of the above studies directly
examined details of overturning events.

The objective of this work is to investigate overturns in stratified homogeneous
turbulence, with and without shear, using DNS. The full field data provided by DNS is
exploited to extract details of the structure and dynamic evolution of overturns. Such
knowledge will provide a better understanding of the flow energetics and mixing and
be useful in the interpretation of one-dimensional profile measurements. Although
DNS is limited to relatively low Reynolds number flows, the shear flow conditions
are comparable to that of KVA and the behaviours of the flows are in qualitative
agreement. Issues arising from the work of KVA are addressed. The three-dimensional
structure of overturns is educed by extending the one-dimensional Thorpe method to
three dimensions and visualizing contiguous regions of non-zero Thorpe displacement.
Examination of these structures and the underlyng flow field reveal the generation
mechanism and subsequent evolution. The contribution and significance of overturns
to the flow energetics and mixing are determined through conditional statistics and
also by direct inspection of realizations of the flow. Although the overturn interiors
do not make a major contribution to the overall flow TKE and APE budgets, the
overturn peripheries are found to be active sites of APE, buoyancy flux and diapycnal
mixing. Key dynamic processes occurring during the lifetime of the overturns are
identified through the use of activity diagrams.

The simulations are described in § 2. DNS results on overturn kinematics and
dynamics are presented in § 3 and § 4. Further analysis and discussion are given in § 5
and conclusions in § 6.

2. Direct numerical simulations
DNS of homogeneous turbulence with uniform stable stratification and with and

without a mean shear is performed for this study. The uniform mean vertical gradients
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of the velocity u and density ρ are denoted by S ≡ dU/dz and dρ/dz. The reference
scales for velocity and density are �U = (dU/dz)L and �ρ = (dρ/dz)L, where L is
the height of the computational box. In the unsheared case, the reference velocity
is the uniform mean velocity U . Relevant non-dimensional parameters include the
turbulent Reynolds number based on the Taylor microscale, Reλ = vλ/ν, the Shear
number, Sh = Sv2/ε, and the Schmidt number, Sc = ν/D. Here, v is the r.m.s turbulent
velocity, ε is the kinetic energy dissipation rate, ν is the kinematic viscosity, and D is
the mass diffusivity. The Taylor microscale is λ= (15v2ν/ε)1/2. In these runs, density
is solely determined by temperature. Thus, the Prandtl number, Pr = ν/κ (κ is the
thermal diffusivity) can be used interchangeably with Sc. For the unsheared runs,
the significance of the turbulence with respect to the mean stratification is given
by the initial turbulent Froude number, Fr = v/(l N), where N = (−g dρ/dz/ ρ0)

1/2

is the buoyancy frequency, l = π
∫

(E(k, t = 0)/k)dk/(2v2) is the turbulent integral
scale based on the initial isotropic turbulent energy spectrum E(k, t = 0) where k

is the scalar wavenumber magnitude, and g is the acceleration due to gravity. For
the sheared runs, the relative significance of stratification and mean shear effects is
characterized by the gradient Richardson number, Ri =N 2/S2. Finally, the buoyancy
Reynolds number, Reb = ε/νN2, characterizes the separation of scales between the
largest scale of turbulence not controlled by buoyancy and the smallest viscous scales
(Ivey & Imberger 1991).

The governing equations describing the flow are the time-dependent continuity
and Navier–Stokes equations with the Boussinesq approximation for the density. The
numerical solution procedure is based on a second-order finite difference scheme in
all three spatial directions with discrete Fourier interpolation for the mean advection
term and second-order Adams–Bashforth time integration (Gerz et al. 1989). The
computational domain is a finite cube containing 1283 grid points. Periodic boundary
conditions are employed in the x (streamwise) and y (spanwise) directions and shear-
periodic conditions in the z (mean gradient) direction. The shear-periodic condition
corresponds to continuous remapping by applying horizontal periodicity (see Gerz
et al. 1989, for further details).

All simulations are initialized with the same fully developed isotropic turbulent
velocity field and zero scalar (density) fluctuations. Such an initial configuration for
the stratified simulations corresponds to a volume of turbulence upon which an
unperturbed linear stratification is imposed with or without a uniform background
shear. There is no initial lengthscale associated with the density field. This initial
condition was first used by Jacobitz et al. (1997) primarily for the minimization
of any nonlinear energy-transfer-induced transients observed in the initialization
procedures of Holt et al. (1992) and Shih et al. (2000). Although the transients are
minimized, they still occur because the turbulent velocity and density fields must
become correlated and the turbulence must adjust to the background shear and
stratification. Shear-induced transients may last up to time St ≈ 2.5 (Jacobitz et al.
1997) which translates to Nt ≈ 1.76 in the highest stratification runs of the present
study. No observations or objective criteria exist to determine the exact duration
of all other transients. In previous work, Diamessis & Nomura (1999) studied the
effect of initial conditions on the structure and dynamics of gradient quantities in a
stratified homogeneous shear flow; however, it is difficult to extrapolate the behaviour
of overturns from such results. Thus, results of the present study should be interpreted
keeping in mind the aforementioned transients. Note, however, that the present initial
condition is particularly effective in allowing the identification of overturn generation
mechanisms. The initially unperturbed neutrally or weakly stratified density field
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Run Reλ Sh Sc (Pr) Ri Fr Reb

RUS1 20 0 0.7 – 1.86 117
RUS2 20 0 0.7 – 0.93 29
RUS3 20 0 0.7 – 0.58 12
RS1 20 3.2 0.7 0.05 1.86 117
RS2 20 3.2 0.7 0.2 0.93 29
RS3 20 3.2 0.7 0.5 0.58 11.7
RS4 20 3.2 0.7 1.0 0.41 5.9

Table 1. Simulation runs and associated initial non-dimensional parameter values.

provides the ‘cleanest’ configuration to observe the overturning effect of small-scale
coherent flow structures (see § 4.1). In such a situation, buoyancy does not control
the scales of the flow structures and thus the overturn generation mechanism should
be the same for either an unperturbed or an already stirred and mixed density field
as in the initial condition of Holt et al. (1992) and Shih et al. (2000). For the most
up-to-date discussion of initialization techniques of stratified turbulence simulations
the reader is referred to Dommermuth et al. (2002).

A list of the simulations performed and the values of the associated parameters
is given in table 1 (RUSx designates unsheared and RSx sheared runs). The initial
values of Reλ and Sh (for the sheared runs) as well as the value of Sc are kept fixed.
The relative intensity of the initial isotropic turbulence velocity field with respect to
the mean velocity, (2Ek/3)1/2/U (Ek is the turbulent kinetic energy, TKE) is equal
to 0.0234 for all runs. The values of Fr, Ri and Reb are varied by changing N . The
choice of the specific values of Fr was dictated by the sheared runs, in which a
critical (stationary) value of Ri, Ricr ≈ 0.1, designates distinct flow regimes. Above
Ricr, the growth of the TKE is inhibited by buoyancy forces (Holt et al. 1992;
Jacobitz et al. 1997; Shih et al. 2000). Cases of subcritical, weakly supercritical and
highly supercritical stratification with Ri = 0.05, 0.2 and 0.5, respectively, are thus
considered. A sheared run of Ri = 1 was also performed (RS4). The results are similar
to those of run RS3 but exhibit distinct net countergradient fluxes of momentum and
mass not observed in any of the other runs. The aforementioned value of Ricr agrees
with the Ricr = 0.095 of KVA but is lower than the theoretically predicted value of
0.25 due to the low Reλ of the DNS (Jacobitz et al. 1997). The initial Sh was chosen
to be within the range of values that allow the turbulence to grow by extraction of
energy from the mean shear against viscous and linear effects (Jacobitz & Sarkar
1999). The low values of initial Reλ and Pr are dictated by computational restrictions.

To ensure adequate grid resolution, the criterion LKkmax > 1 was satisfied where
LK = (ν3/ε)1/4 is the Kolmogorov lengthscale and kmax the maximum resolved wave-
number (Pope 2000). Computed energy and dissipation spectra indicate resolution of
the dissipative scales of motion beyond the peak of the dissipation spectrum whereas
no energy accumulation occurs at the highest resolved wavenumbers. Therefore, for
the purpose of this present study, the above resolution criterion should be adequate
despite the low-order finite difference scheme employed and any truncation-error-
induced artificial dissipation. In addition, the two-point velocity correlation Ruu(rx)
was evaluated as a suitable check for the validity of periodic boundary conditions in
the x-direction (Nomura & Elghobashi 1992).
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Figure 1. Thorpe-sorting of a sample vertical density profile ρ(z) for Ri= 0.05 (St =2):
(a) Measured profile (solid line) with Thorpe-sorted profile (dotted line), (b) profile of
displacement d(z) (dotted circles delineate overturns).

Despite the computational limitations, the DNS flow conditions are comparable
to those of KVA’s wind-tunnel experiments. In KVA, the initial Reλ is 30, Sh ≈ 3,
Pr =0.7, and the range of Ri values considered is Ri ∈ [0.015, 0.5].

3. Overturn kinematics
3.1. Identification of three-dimensional overturns

In the analysis of vertical density profile measurements, overturns are identified as
regions of non-zero Thorpe displacement, d(z), which is the distance a fluid parcel
in the measured density profile is displaced during the sorting process that produces
a gravitationally stable profile. Figure 1 shows a representative instantaneous ρ(z)
profile from the DNS data with the corresponding sorted profile and the profile of
d(z). The overturns correspond to segments of d(z) �= 0 and exhibit a typical signature
of a reverse Z-shape in the d(z) profile (Dillon 1982; Itsweire 1984; KVA). The rare
exception of d(z) = 0 in the interior of an overturn may occur in the core of such
an event where the density field is homogenized due to molecular diffusion. Note
that overturns contain both positive and negative ∂ρ/∂z although all ∂ρ/∂z > 0 in
the flow occur only within the interior of overturn regions. In addition, according to
the definition of a complete overturn of Dillon (1984), the values of ρ inside a given
overturn are not found anywhere else in the profile.

Hereafter, the term ‘overturn segment’ will denote a contiguous one-dimensional
segment of a vertical profile associated with d(z) �= 0, whereas ‘overturn patch’
refers to a contiguous three-dimensional region of d(z) �= 0. Both structures have the
characteristic property of consisting of heavy fluid over light. In the cases where the
distinction between one-dimensional and three-dimensional structure is not necessary,
the term ‘overturn’ is simply used. It is emphasized that in this work overturns are
educed using information from the structure of the density field alone. The associated
velocity or vorticity fields are not taken into account in the definition.

3.2. Spatial structure and intermittency of three-dimensional overturns

The three-dimensional structure of overturns is examined by visualizing overturn
boundaries, i.e. the spatial envelope of d(z) �= 0. As in subsequent sections, the focus
here is on runs of moderate to high stratification (RS2, RUS2 and RS3). Note that
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Figure 2. Overturn boundaries (spatial envelope of non-zero Thorpe displacement) over the
entire computational domain, at Nt =0.9 (St =2): (a) Run RUS2, and (b) Run RS2.

visualizations of cases RS1 and RUS1 have been omitted as the high volume fraction
of overturns renders the discernment of any individual overturning events extremely
difficult. Plane-cuts across the flow field indicate that the overturns are much larger
in both the vertical and horizontal directions, with the qualitative nature of these
structures being similar to that in runs RS2 and RUS2.

Figure 2 illustrates the spatial structure of overturns in runs RUS2 and RS2. By
Nt = 0.9 (St = 2) a striking difference is observed. While in the unsheared flow RUS2
(figure 2a), the overturns are irregular structures with a random orientation, in the
sheared flow RS2 (figure 2b) they exhibit a characteristic elongated structure inclined
from the horizontal plane. These features are due to the preferential orientation of
the vortical structures that generate the overturns (see § 4.1) and advection by the
mean shear. The above difference may be contrasted with the similar initial evolution
(Nt < 2) of the overturn lengthscale in both of these runs (see § 3.4).

Figure 3 show overturns at various times for case RS3 to illustrate the growth
and subsequent gravitational collapse of the overturn events for a high value of
N . Figure 3(a) shows significant overturns having been generated at small scales
by Nt = 0.71 (see also § 3.4). The overturns begin to approach their maximum size
by time Nt = 1.42 (figure 3b) while the distinct structure and directional preference
caused by the shear are quite evident. The size and number of overturns have
diminished by Nt = 4.26 (figure 3c). The overturn population continues to diminish,
yet its vertical extent remains relatively constant as seen in figure 3d at time Nt = 5.68
(also demonstrated in figure 7). Evidently, certain overturns survive longer than
others. Animations (not shown here) confirm that these events are older patches in
the process of arrested collapse and not newly generated overturns. The structure
of overturns for run RUS3 is considered in detail in Diamessis (2001) and its only
difference with run RS3 is the absence of shear effects in the patch structure, as in
the comparison between runs RUS2 and RS2.

Figure 4 shows (x, z) and (y, z) plane-view cuts of the overturn boundaries
superimposed on isopycnals for run RS2 at time Nt = 2.68. Some noteworthy features
of the density field associated with the overturns may be observed. In figure 4(a), a
distinct orientation from the streamwise direction is evident. As observed by KVA, the
strongest ∇ρ is negative (stable due to the stable mean gradient) and here it is seen
to occur just outside the boundaries of the overturns, often between two overturning
events. The upward slope of sheets of high magnitude ∇ρ (figure 4a) can be attributed
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Figure 3. Overturn boundaries (spatial envelope of non-zero Thorpe displacement) in the
entire computational domain for run RS3: (a) Nt =0.71, (b) 1.42, (c) 4.26, (d) 5.68.
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Figure 4. Plane-view cuts across the flow for sheared run RS2 (Nt =2.68. Thick lines represent
overturn boundaries and thin lines are isopycnals. (a) (x, z)-plane at y = 0.15625 and (b)
(y, z)-plane at x = 0.16. the dash-dotted lines in (b) divide the plane into four quadrants. The
bottom left one is the focus of visualizations used in § 4.2.
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Figure 5. (a) Close-up of plane-view cut across the flow ((y, z)-plane at x = 0.97) for run
RS3 (Nt =5.68). Thick lines represent overturn boundaries and thin lines are isopycnals.
(b) Vertical density profile across the centre of a specific overturn.
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Figure 6. Time development of the fraction of the flow volume occupied by overturns.

to the preferential orientation of compressive strain in the shear flow (Nomura &
Diamessis 2000; Diamessis & Nomura 2000). Figure 5 illustrates a close-up of a (y, z)
plane-view cut across a typical overturn at a later time Nt = 5.68 for run RS3, along
with a vertical density profile extracted from the centre of the illustrated overturn.
A homogenous density distribution within the overturn with a slightly positive value
of ∂ρ/∂z is observed. Note that run RUS2 exhibits qualitatively similar features to
run RS2 but without the directional preference due to shear (see Diamessis 2001, for
more details).

A measure of the spatial intermittency of overturns is the volume fraction of the flow
occupied by them. The evolution of this quantity is shown in figure 6. In the unsheared
flows, the volume fraction initially grows. Lower values of maximum volume fraction
are observed at higher N (run RUS3). This maximum value is attained in the interval
1 < Nt < 2. The high-stratification runs (supercritical: Ri >Ricr) for the sheared flows
exhibit similar behaviour to the unsheared flows, the main difference being that the
maximum volume fraction value is higher and the rate of decrease is slower for the
sheared cases. In run RS1 (subcritical: Ri < Ricr), shear continues to supply energy to
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the turbulence. Thus, the overturns grow to occupy about 50% of the flow volume by
the end of the simulation. It is interesting to compare this number to the observation
of Saggio & Imberger (2001) who found on the average that the energetic central
metalimnion (thermocline) of a lake, dominated by Ri < 0.5, has 35% of its volume
occupied by overturns.

3.3. Overturn lengthscale definition

As indicated in § 1, a measure of the vertical scale of the overturning motion within a
greater turbulent region is given by the average Thorpe scale 〈LT 〉. If all NP available
vertical density profiles containing overturns are sorted into stable ones, then

〈LT 〉 =

[
1

NP

NP∑
i=1

LTi

]
LTi

�=0

. (3.1)

In the present DNS results, 〈LT 〉 describes the average overturning length over the
entire flow. LTi

is the average Thorpe scale of an individual profile, defined as

LTi
=

[
1

M

M∑
j=1

d(zj )
2

]1/2

d(zj )�=0

, (3.2)

where d(zj ) is the Thorpe displacement and M is the number of points in the profile
with d(zj ) �= 0. Note that 〈LT 〉, as defined by (3.1) and (3.2), differs from that of other
DNS studies (Itsweire et al. 1993; Smyth & Moum 2000). In contrast to these studies,
only profiles containing points with d(zj ) �= 0 are taken into account. This is consistent
with the common oceanographic practice which recognizes that the most accurate
estimate of the average height of overturning in the water column is obtained when
one employs only profiles with non-zero Thorpe displacements (Moum 1996; Smyth,
Moum & Caldwell 2001). The same methodology was used by KVA who sampled
300 to 500 profiles at each individual measurement location. As shown later on, the
above difference in methodologies can lead to disagreements in the interpretation of
the evolution of overturning events, particularly in the final stages of their evolution
(see § 3.4). A related lengthscale is the average maximum Thorpe scale, 〈LT max〉,
which is the average over all available profiles of the maximum Thorpe displacement
of each profile (see Itsweire et al. 1993). Consistent with 〈LT 〉, 〈LT max〉 takes into
account only profiles containing instabilities. This lengthscale serves as a measure of
the vertical scale of the largest events within the flow’s overturn population. In all
runs considered here, the ratio 〈LT max〉/〈LT 〉 ranged from 2.5 to 1, depending on the
degree of stratification and the spatial intermittency of the overturning patches, i.e.
the further 〈LT max〉/〈LT 〉 departs from a value of 1, the greater the range of overturns
of different scales (from small to largest) present in the flow (Smyth & Moum 2000).

3.4. Overturn lengthscale evolution

The evolution of 〈LT 〉 is shown in figure 7(a). Runs RUS1 and RS1 have a similar
initial evolution until Nt ≈ 1. At that point, RUS1 exhibits a decay. RS1, however,
exhibits a short period of zero growth rate succeeded by a constant increase as
the turbulence enters its asymptotic phase of shear-driven exponential growth. Runs
RUS2 and RS2 exhibit a similar initial growth until time Nt ≈ 1 after which a slower
rate of decay is observed in the (weakly supercritical) sheared case. The strong-
stratification runs (RUS3, RS3) exhibit the same behaviour regardless of the presence
of shear. 〈LT 〉 grows until Nt ≈ 2 and then decreases by a factor of two by Nt ≈ 4.
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Figure 7. Time series of average Thorpe scale 〈LT 〉: (a) unsheared and sheared runs, time
scaled with N , (b) sheared runs, time scaled with S.

It then remains constant until Nt ≈ 7. The fact that 〈LT 〉 remains constant while the
corresponding overturn flow fraction volume drops rapidly (figure 6) indicates that
there are progressively fewer overturns of a relatively constant size. Such a behaviour
of the overturn population was extrapolated by KVA from a comparison of 〈LT 〉 with
the overturn (Ellison) lengthscale Lt (defined in § 1). If one had used the definition
of 〈LT 〉 of Itsweire et al. (1993) and Smyth & Moum (2000) (which includes all
profiles in the dataset under consideration, see § 3.3), the spatial intermittency of
overturning events would have been averaged out and 〈LT 〉 would instead exhibit a
rapid decrease to zero. In addition, the ratio of 〈LT 〉, calculated through these two
different definitions, to Lt (not shown here) is found to behave exactly as in figure
17 of KVA. 〈LT 〉 as defined in (3.1) and (3.2) does not behave proportionally to Lt

throughout the flow evolution, particularly in the late phases of the strongly stratified
runs, where 〈LT 〉 is small and Lt is controlled by significant wave-like disturbances
present in the flow (Smyth & Moum 2000). Thus, the use of Lt is not warranted when
characterizing overturn event geometry.

Finally, if one plots the evolution of 〈LT 〉 for the sheared runs with time scaled by
S (figure 7b) the behaviour observed is qualitatively consistent with that shown in
figure 16 of KVA. It is of interest to note that at early times, all four sheared runs
exhibit an identical, Ri-independent growth from a zero value. Similar observations
were made for the corresponding results from the unsheared runs (not shown), when
time was scaled with the initial large-eddy turnover time. Although this early growth
behaviour occurs partly during the initialization-related transients, these observations
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Figure 8. Plane-view cut across a 643 subdomain of flow RS2, at time Nt =2.68 (y, z)-plane
at x = 0.16, showing overturn boundaries (thick solid lines) and contours of the second
invariant of the velocity gradient tensor II = w2/2 − S2, normalized by the average enstrophy
of the flow 〈w2〉. Contour value spacing is 0.1; thin sold lines: positive values (minimum and
maximum values 0.1 and 1, respectively), thin dotted lines: negative values (minimum and
maximum values −1 and −0.1, respectively). Overturns associated with high II are young
events undergoing active turbulent stirring.

suggest that the overturn generation mechanism is stratification-independent, given
the identical initial velocity fields of the sheared runs (and those of the unsheared
runs). This possibility is discussed in greater detail in § 4.1.

4. Overturn dynamics
4.1. Overturn generation mechanisms

As indicated by figure 7(b), the generation mechanism of overturns is independent of
stratification. Given the initial passive scalar nature of the density (due to the small
early displacements of the isopycnals and the weak restoring buoyancy forces), the
initial growth of 〈LT 〉 should be independent of any transients associated with the
adjustment of the initially unperturbed density field to the turbulence. In addition,
the limited separation of lengthscales (as indicated by the low Reb) suggests that
overturns are likely to be generated by small-scale motion in the flow. Previous DNS
with a linear density profile (dρ/dz < 0) in zero gravity (Diamessis & Nomura 2000)
revealed that regions of strong positive fluctuating vertical density gradient, ∂ρ ′/∂z > 0,
a condition always associated with overturning, are largely associated with regions of
high-amplitude vorticity ω and low-amplitude strain rate, S, i.e. high positive value of
the second invariant of the velocity gradient tensor, II = ω2/2−S2, which are known
to form tube-like vortex structures (Nomura & Post 1998; Diamessis & Nomura
2000). Evidence of the association of young overturns and high II > 0 regions is
given in figure 8, which shows a (y, z) quarter-plane snapshot corresponding to the
lower-left quarter-plane in figure 4(b) (i.e. at time Nt = 2.68 for run RS2). The plot
shows overturn boundaries overlaid on contours of II . At this time, the flow contains
a collection of older (in some cases collapsing) overturns and relatively younger
ones. Overturns coinciding with regions of high-amplitude II > 0 are generally found
to be smaller in size and thus considered young active events. Figure 9(a) shows
a close-up view of a typical young overturn and illustrates the stirring/overturning
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Figure 9. (a) Close-up view of small-scale overturning event in the (y, z)-plane at x = 0.25
for Ri= 0.05 flow (St =2), showing isopycnals with the corresponding velocity field. Dashed
lines are contours of streamwise vorticity. (b) Illustration of the effect of vortex structures on
a linear density profile.

action of the vortex tubes. Superimposed on the density field are velocity vectors and
dashed contours of streamwise vorticity which indicate the presence of a vortex of
elliptical cross-section. The vortex instigates overturning by wrapping the isopycnals
around its core and rapidly entrains ambient fluid. The strong ∇ρ observed at the
overturn boundary is associated with the strong compressive strain occurring at the
periphery of the vortex, the structure of which bears similarities to the Burgers vortex
(Nomura & Post 1998).

In the presence of mean shear, the vortex structures tend to exhibit distinct spatial
orientation (Nomura & Diamessis 2000). As observed in figure 2(b), the preferred
orientation of these structures is imparted to the generated overturns which further
develop in the presence of mean shear. The effectiveness of the vortex structures in
causing overturning is enhanced by background shear, which promotes horizontal
ω by amplification of the perturbation vorticity at first in the streamwise and
later in the spanwise direction (Nomura & Diamessis 2000). Strong horizontal
vorticity establishes ∂ρ ′/∂z > 0 through rotation of the imposed mean stratification
(Diamessis & Nomura 2000). In the unsheared flow, where the turbulence is initially
isotropic, the vortex tubes have no specific directional preference and thus their ability
to overturn is not optimally exploited. A similar statement can be made for sheared
flows with high values of the ratio Reλ/Sh, which are associated with a more isotropic
orientation of the vortex tubes (Nomura & Diamessis 2000).

Figure 9(b) depicts the stirring action of the vortices by showing the effect of
two counter-rotating horizontal vortices on a linear density profile. A disturbance
of the density field by solid-body rotation generates initially a region of ∂ρ/∂z > 0
with high |∂ρ/∂z|2 at the boundaries. An adjacent counter-rotating vortex, acting
either simultaneously or successively, can significantly enhance isopycnal compressive
straining at overturn boundaries resulting in even stronger ∇ρ as illustrated in
figure 9(b) and also in figure 4. The close proximity of such adjacent overturns allows
them to merge and gradually establish a single contiguous region of d(z) �= 0. This
is how larger-scale overturns develop in the present flows. It is emphasized that this
merging process refers strictly to the local development of the density field and not
to the overturn-generating vortices.

Based on two-dimensional rake visualizations of their temperature data, KVA con-
jectured that overturns are generated by the localized vertical advection of well-mixed
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lumps of fluid past their equilibrium position and subsequent displacement of stable
density fronts. A lump which is hotter (colder) than the ambient fluid produces an
overturned region above (below) it. This scenario may indeed be possible after the
density field has been sufficiently stirred and mixed. The present results indicate
that the vertical advection is associated with strong vortical structures in the flow.
Well-mixed lumps of fluid in the vicinity of a vortex may be formed through the
zero-gradient-point (hot and cold spot) production mechanisms as demonstrated in
the two-dimensional DNS of Gibson, Ashurst & Kerstein (1988). In the case of
the present three-dimensional DNS, the formation of such a zero-gradient point is
evidenced in figure 9(a) at the location (y, z) ≈ (0.24, 0.3).

4.2. Contribution of overturns to energy budgets

The energetic significance of overturns may be assessed by examining the contribution
of overturns to the budgets of TKE and APE. The budget equations and associated
quantities are described in Appendix A. Figures 10–15 show the time development of
the budget quantities (TKE, turbulence production, TKE dissipation rate, buoyancy
flux, APE and diapycnal flux) and compare the contribution of the overturns to
the total flow (volume integrated) value of each quantity. Included in these figures
are instantaneous realizations (y, z quarter-plane snapshots corresponding to the
lower-left quarter-plane in figure 4b) showing the spatial distribution of the energetic
quantities together with the location of the overturning patches. The selected time of
the snapshots provides a representative description of the flow conditions in which
there exists a significant range of overturning scales not controlled by buoyancy (i.e.
FrS > Frcr

S as indicated in § 5.1 despite the near constant value of 〈LT 〉 in figure 7b). As
illustrated in figure 8 and discussed in § 4.1, at this time, the flow contains a collection
of both young and old overturns. The presentation is limited to the shear flow results
as the unsheared runs exhibit only quantitative differences (with the exception of
shear production P , which is zero by definition). In general, the sheared overturns
are characterized by much greater values of the TKE and APE budget quantities.
Note also that the Ri =0.05 case (RS1) is not examined here due to the high fraction
of flow volume occupied by the overturns which makes it hard to isolate them as a
subset of the total flow with certain unique features.

Figure 10(a) shows the TKE ((A 1) in Appendix A) evaluated for the total flow as
well as the volume occupied by overturns for the three supecritical Ri simulations. The
total flow TKE exhibits a decay in all three cases. The TKE of the overturns grows
to a maximum within the interval 1 < Nt < 2, following an evolution parallel to that
of the corresponding overturn volume fraction (figure 6). The TKE in the interior of
the overturns does not exceed more than approximately 40% of the total flow TKE.
When the overturns occupy more than 5% of the flow volume, the per-unit-volume
values of the TKE of these events (not shown) exhibit a 10% to 25% greater value
than their respective values in non-overturning regions. The difference is not large
enough to consider most TKE to be concentrated in overturning events. The TKE
within the overturns essentially grows proportionally to their volume fraction and
thus the TKE in the flow can be linked mostly to non-overturning motions. When
buoyancy begins to control the overturns, their volume fraction decreases along with
their TKE content, as they are less associated with turbulent stirring. In cases RS3
and RS4, at later times, the kinetic energy of the flow is associated with some form of
decayed turbulence. Further analysis would be required to determine the exact nature
of these residual motions and particularly what percentage of the associated kinetic
energy is contained in internal wave motions. Figure 10(b) shows contours of TKE
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Figure 10. (a) TKE evaluated for the total flow (plain lines) compared to that for the volume
occupied by overturns (lines with symbols), for sheared runs. (b) Plane-view cut across a
643 subdomain of flow RS2, at time Nt = 2.68 (y, z-plane at x = 0.16), showing overturn
boundaries (thick solid lines) and contours of local value of TKE normalized by its spatial
average. Minimum and maximum contour values are 3 and 8, respectively and contour value
separation is 1.

and overturn boundaries for run RS2 at Nt = 2.68. Incidences of high TKE in the
vicinity of overturn boundaries are occasionally observed and tend to be associated
with younger overturns (figure 8).

The corresponding set of plots for the turbulence production P (A 2) is shown in
figure 11. Maximum P for the total flow occurs at Nt = 1, with contributions from
the overturning regions never exceeding 25%. The fraction of P associated with the
overturns appears to follow their volume fraction. The per-unit-volume value of P for
the total flow and overturns (not shown) exhibit similar behaviour to that observed
for the TKE. In addition, the negative total flow turbulence production observed in
runs RS3 and RS4 (see Holt et al. (1992) for an explanation of this phenomenon,
which is considered to be transfer of energy back to the mean flow) appears not to be
associated with any overturning activity, as P integrated over overturns exhibits a strict
lower bound of zero. When examining the corresponding contour plot (figure 11b),
high positive −Su′w′ occurs predominantly outside overturns. The few cases where
high positive −Su′w′ is observed within overturns or at their boundaries are usually
situations where the turbulence is actively stirring the density field (figure 8) and
−Su′w′ is characterized by a dipolar structure (local maximum adjacent to a local
minimum).
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Figure 11. As figure 10 but for turbulence production P . (b) Overturn boundaries (thick solid
lines) and contours of the local value of −Su′w′ normalized by its spatial average (solid lines:
positive values, dotted lines: negative values). Contour values are in the range [±3, ±23], with
separation 4.

The contribution of overturns to the buoyancy flux, Φz (A 2) is considered in
figure 12. As seen in the associated time series, Φz is primarily associated with
non-overturning motion, the contribution from overturning events decreasing with
increasing Ri. The per-unit-volume value of Φz is approximately the same for both
overturning and non-overturning regions. Similar to the case of negative production,
negative Φz, which corresponds to restratification at high N (e.g. run RS4), is
not associated with motions in the overturn interiors. However, Diamessis (2001)
found that the periphery of a tracked individual three-dimensional overturning patch
during collapse was characterized by non-negligible Φz < 0. Further investigation is
required to quantify the exact contribution of overturns to negative P and Φz. The
corresponding contour plot for buoyancy flux (figure 12b) reveals that high w′ρ ′

develops mostly outside overturns, yet strong positive buoyancy flux does occur at
the boundaries of actively stirred overturns. This phenomenon is evidently associated
with fluid being advected away from its equilibrium position, but not to the point
where a heavy over light configuration has been established. Regions of positive Φz

are observed to be accompanied by negative Φz in a dipolar configuration at the
boundaries of overturns. This configuration as well as the similar one observed for P

are associated with wrapping of the isopycnal surfaces around the core of the stirring



Overturns in stably stratified homogeneous turbulence 213

2.5

2.0

1.5

1.0

0.5

0

–5.0

(×10 –4)

Φz

0 4 6 8 10
Nt

RS2
RS3
RS4

(a)

0.5

0.4

0.3

0.2

0.1

0.10 0.2 0.3 0.4 0.5
y

z

(b)

2

Figure 12. As figure 10 but for buoyancy flux Φz. (b) Overturn boundaries (thick solid lines)
and contours of local value of w′ρ ′ normalized by its spatial average (solid lines: positive values,
dotted lines: negative values). Contour values are in the range [±2, ±16] with separation 1.

vortex. Finally, the strong restratification effects displayed by run RS4 for Nt > 2
(figure 12a) are not associated with collapsing overturning events as these occupy a
negligible fraction of the flow volume.

The contribution of overturns to the TKE dissipation rate ε (A 2) is shown in
figure 13. As indicated by the time series in figure 13(a), the overturns contribute
little to the overall value of ε. Again, the contribution to ε of the overturn interior
follows that of their flow volume fraction and the associated per-unit-volume value
is the same as that of the non-overturning regions. Figure 13(b) suggests that strong
dissipation rates do not tend to occur inside the overturns. Previous studies have shown
that high ε (Diamessis & Nomura 2000) is associated predominantly with sheet-like
structures characterized by comparable rotation and strain, which do not directly
cause overturning (Diamessis 2001). However, high ε also occurs in sheets surrounding
vortex tubes near the boundaries of certain overturns, which are associated with active
stirring.

As expected, overturns play a more important role in establishing the APE of the
flow as well as diapycnal mixing. The contribution of overturns to the APE (A 3) is
shown in figure 14. The APE of the total flow and of the overturns reach a maximum
value at time Nt ≈ 2 for all cases, and then begin to decay. This result is consistent
with the behaviour observed in figure 7(a) where the average overturn size, and thus
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Figure 13. As figure 10 but for turbulent kinetic energy dissipation rate ε. (b) Overturn
boundaries (thick solid lines) and contours of local value of ε normalized by its spatial average
(solid lines). Contour values are in the range [1.5, 6.5] with separation 1.

a fluid parcel’s displacement (APE), reaches a maximum at the same time and then
begins to decrease due to gravitational collapse as the parcel’s APE is converted back
into kinetic energy. Note that the overturns never contribute more than 40% of the
overall flow APE (and typically less), their contribution diminishing with time. This
finding can be compared with results of KVA. As discussed in § 1, KVA estimate
APE using BSPE obtained from sorting the individual profile and thus their APE
is associated only with overturns, although not precisely equal to the total APE of
the overturns. They find the ratio APE/PE never exceeds 15% in the supercritical-
Ri flows. In homogeneous stratified flow, the turbulent potential energy (see § 1)
PE=0.5L2

t N
2, is the actual APE of the flow (Gerz & Schumann 1989a). Although

not precise, the low value of APE/PE in KVA is consistent with the present results
indicating that overturns are not the dominant contributor of the true flow APE.
Nevertheless, the overturns do contribute in establishing APE. Figure 14(b) reveals
that high APE tends to exist in the immediate vicinity of overturn boundaries. As in
the case of the buoyancy flux, Φz, this implies rotationally advected fluid displaced
significantly from its equilibrium position, which has not established a heavy over
light configuration. In addition, the APE per unit volume of overturning regions is
nearly double that of the non-overturning part of the flow. Thus, locally, the rotational
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Figure 14. As figure 10 but for APE. (b) Overturn boundaries (thick solid lines) and contours
of local value of APE normalized by its spatial average (solid line). Contour values are in the
range [5, 35] with separation 3.

motion associated with overturning motion is more effective in generating high APE
than non-overturning motions.

Finally, figure 15 shows the behaviour of the total diapycnal flux, Φd − Φi (A 4).
Evidently, diapycnal mixing is quite weak within the overturns, as would be expected
from figures 4 and 9(a), which show that the strongest ∇ρ is associated with
stable (negative) gradients and not unstable (positive) gradients which occur within
overturns. This observation is consistent with those of KVA in their rake visualizations
and reported negatively skewed pdf of ∂ρ/∂z. Due to the restriction of their analysis
to one-dimensional data and the Thorpe-sorted background profile, however, KVA
were unable to quantify the contribution of overturning motions to the APE budget.
In the DNS, the highest diapycnal flux within overturns occurs prior to the initiation
of gravitational collapse (Nt ≈ 1.5) and is responsible for the well-mixed interior of
older overturns observed in figure 4 and serves as the basis of the collapsing lump
model of Appendix B. However, figures 4 and 15(b) also indicate that the strongest
∇ρ and diapycnal flux, respectively, occur immediately outside and between adjacent
overturning structures. This is due to the compressive strain occurring at the periphery
of the high-rotation overturning motion. Thus, overturns appear to be crucial in terms
of diapycnal mixing.
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Figure 15. As figure 10 but for total diapycnal flux Φd − Φi . The quantity plotted for the
overturns in (a) is specifically (

∫
VOT

(∇ρ)2(−dρ/dz∗)dV − VOT/L3) Ri/ScReL), where VOT is the
volume occupied by the overturns. (b) Overturn boundaries (thick solid lines) and contours of
local value of (∇ρ)2(−dρ/dz∗) normalized by the mean density gradient (solid line). Contour
values are in the range [2, 12] with separation 2.

A notable feature of the evolution of Φd − Φi in all three runs is that it maintains
a significant non-zero value at the same time that Φz goes to negligible values (for
Nt > 4), i.e. diapycnal mixing still persists despite the suppression of overturning and
turbulent mixing. KVA made a similar observation. They described their flow at
this stage as a ‘frozen’ density field (i.e. near-static isopycnal surfaces) with localized
high-∇ρ regions void of any significant turbulent kinetic energy, which, however,
are the cause of this non-negligible value of Φd . Further analysis may be required
for runs of higher values of N to determine if these ∇ρ regions are the result of
the interaction of out-of-phase internal wave modes, a greater range of which is
supported by a higher buoyancy frequency. Finally, as discussed in Diamessis &
Nomura (2000), II → 0 at late times in buoyancy-dominated flows. Not only are
high-rotation motions suppressed but so are localized high-strain flow patterns which
would promote mixing of any horizontal inhomogeneities in the density field. Despite
the non-negligible late stage Φd , the majority of the observed diapycnal mixing is
caused by active turbulence and the associated overturning.

In summary, the interior of the overturns is not a major contributor to the quantities
in the budgets of TKE and APE. However, this conclusion is contingent on the
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Figure 16. (a) A typical one-dimensional overturning segment (from Imberger 1994); w
represents a typical collapse velocity and is used only for the purpose of illustration of
the motion when buoyancy controls the overturn. (b) Model for the collapse of an initially
well-mixed spherical fluid lump of initial radius R0 in a linear ambient stratification (from
Chen 1980). The lump exhibits a collapse which is radially symmetric in the horizontal while
conserving its volume. The centre of mass of the lump is its equilibrium height.

definition of an overturn given in § 3.1. Using this definition, overturn peripheries
appear to be regions of significant energetic activity. If the energetic contribution
of these boundary regions is included in characterizing the energetic significance
of overturns (as is done in the field, where dissipation estimates are produced
from averages computed over bins of a much larger vertical event than that of
an overturning patch (Gregg & Sanford 1988), the overturns would indeed constitute
regions of significant APE, buoyancy flux and diapycnal mixing.

5. Further analysis and discussion
5.1. Activity diagrams of one-dimensional overturn segments

The dynamics underlying the kinematic observations of § 3.2 and § 3.4 are now
examined in greater detail. In the subsequent analysis, the local flow of an overturn
is characterized to determine the relative significance of the turbulence versus the
forces that tend to damp it out (viscous, diffusive, buoyancy etc.) and then mapped
on a variant of the turbulent Froude number vs. turbulent Reynolds number activity
diagram (see Imberger 1994, p. 152). In previous studies, the activity diagram has
been used within a global framework, i.e. one point on the diagram describes
an entire volume of turbulence (Ivey & Imberger 1991; Imberger & Ivey 1991;
Saggio & Imberger 2001) under the assumption that point or vertical line measure-
ments are representative of the global behaviour of the flow volume. In this work,
the activity diagram is adapted to a local perspective with each point effectively
representing a single overturning event. The distribution of points at any given
time then provides information on the population of overturns in the flow. For the
purpose of this analysis, each overturn is essentially characterized by an individual
one-dimensional segment. This simplifies the analysis considerably while producing
useful insight into the physical processes associated with overturns. The identification,
isolation and tracking of three-dimensional overturn patches for the purpose of this
analysis requires a complex algorithmic procedure and is a separate topic of ongoing
investigation which is discussed elsewhere (Diamessis et al. 2002).

The analysis begins by establishing a simple conceptual model and characteristic
quantities. Following Imberger (1994) and Saggio & Imberger (2001), consider a
prototypical overturning segment, illustrated in figure 16(a). This segment consists
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of a perturbation to a linear background stratification induced by one or more
coherent vortices of strong resultant horizontal vorticity. One can then define: (a)
a typical lengthscale, the r.m.s. Thorpe displacement, LT s , of the segment, (b) a
typical horizontal vorticity (a quantity available in DNS data) along the segment, the
r.m.s. value of fluctuating horizontal ωHs (the fluctuating component is used since
stirring of the density field by the mean vorticity is countered by the mean strain
(Diamessis & Nomura 2000), (c) a typical value for the reduced gravity, g′ =
|−gρ ′

rms/ρ0|, where ρ ′
rms is the r.m.s. of density fluctuations from the true background

density gradient (not the local Thorpe-sorted density gradient) over the entire segment.
One may now define four characteristic timescales (see also Imberger 1994; Teoh,

Ivey & Imberger 1997). The advective timescale, ta =ω−1
Hs , is the time typical of

the small-scale turbulence to stir the local density field by a length LT s (for the
small scale-separation of the DNS, advection does occur primarily at small scales).
The gravitational collapse timescale, tg = (LT s/g

′)1/2, is the time required for a fluid
particle of reduced gravity g′ in an overturning segment to return to its equilibrium
position due to gravity. The viscous timescale, tv =L2

T s/ν, is the characteristic time
for viscosity to decelerate any fluid motion induced by turbulence or buoyancy. The
diffusive timescale, td = L2

T s/D, is the characteristic time for molecular diffusion to
smooth any density perturbation across a segment of length LT s .

From the above definitions, the following three non-dimensional parameters
are defined, which indicate the relative importance of these timescales within an
overturning segment (critical values of these parameters are derived in Appendix B):

(a) Segment Froude number, FrS:

FrS =
tg

ta
=

[
LT s ω2

Hs

g′

]1/2

. (5.1)

Below the critical value FrS < Frcr
S = 3.9 (see Appendix B), the local small-scale

turbulence cannot strain and mix and, in the present low-Reλ DNS, overturn the
density field against the restoring effect of gravity.

(b) Segment Reynolds number, ReS:

ReS =
tv

ta
=

L2
T s ωHs

ν
. (5.2)

Using the same dissipation-range scaling as in Appendix B, we can write

ReS =

[
LT s

LK

]2

. (5.3)

Thus, ReS reflects the extent of vertical stirring induced in the patch with respect to the
viscous scale. Any overturn exhibiting ReS <Recr

S = 25 (Appendix B), has overturning
and straining motion impeded by viscosity.

(c) Segment Grashof number, GrS:

GrS =
t2
v

t2
g

=
L3

T sg
′

ν2
=

[
ReS

FrS

]2

. (5.4)

The Grashof number compares the time it takes the momentum within an overturn
to diffuse due to viscosity to the time it takes the isopycnals to return to their original
position due to gravity. In overturns with GrS < Grcr

S , viscosity strongly counteracts
the isopycnal collapse. Based on theoretical considerations proposed by Chen (1980)
a value of Grcr

S ∈ [400, 1200] is derived in Appendix B for the Fr =0.58 runs given
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the observations of § 3.2 and § 3.4 and the simple conceptual model of figure 16(b).
For these specific runs, knowledge of Grcr

S is essential in interpreting their late-time
dynamics. Note that this value of Grcr

S is dependent on the value of LT s at the
beginning of gravitational collapse.

Activity diagrams using FrS and ReS may now be generated. In order to represent
the overturn population by a sample of one-dimensional segments, not all the profiles
containing overturns in the sampled dataset are employed. The selected profiles
are sampled at a separation distance at which the two-point xy correlation of
the Thorpe displacement assumes a value of 0.2. Two profiles separated by this
distance are essentially statistically independent as the overturning patterns in each
one of them are sufficiently decorrelated. The separation distance in the x- and y-
directions varied from 16 to 2 grid points, for the weakly and strongly stratified flows,
respectively.

Figures 17 and 18 show activity diagrams corresponding to specific times for three
runs: RUS1, RS1 and RS3. A significant range of values of ReS and FrS is always
observed. In all the runs, ReS often lies below the critical value Recr

S as viscosity plays
a significant role in the overturn dynamics due to the low Reλ of our simulations.
Note that the majority of events with ReS < Recr

S correspond to the smallest observed
overturning scales. In run RS1 (Ri = 0.05), few points occur in the lower left quadrant,
i.e. buoyancy has a negligible effect on all of the overturns (figure 17a). A significant
number of overturns are dominated by inertial effects with ReS >Recr

S , though viscosity
remains important overall (ReS < Recr

S for the majority of points). Diffusion also plays
a non-negligible role because Pr =0.7 and the timescales of viscous and mass diffusion
are comparable. Later in time (figure 17b), inertial effects remain significant with ReS

reaching as high as 300 for certain overturns. This trend continues throughout the
duration of the simulation as the overturns, with the aid of the mean shear, grow
through active turbulent stirring which remains uninhibited by buoyancy (figure 7a).
Case RUS1 initially exhibits a similar trend (figure 17c). However, the turbulence has
no source of energy to sustain it and is gradually damped out by viscosity (indicated
by a reduction in ReS in figure 17d). The size of the overturns initially grows similarly
to case RS1, but eventually (time Nt = 1.8, see figure 7a) the overturns are large
enough to be controlled by buoyancy and begin to collapse, as indicated by the
majority of points characterized by FrS � Frcr

S in figure 17(d).
When examining the dynamics of the patches in run RS3 (Ri = 0.5, figure 18a),

one sees early on that inertial effects are still significant yet the influence of buoyancy
is much stronger (FrS < Frcr

S ). The inertial effects are rapidly overcome by buoyancy,
as ReS and FrS both decrease (figure 18b) along with the collapse in 〈LT 〉 (figure 7).
Viscosity effectively counteracts buoyancy as shown by most points having GrS <Grcr

S ,
an effect of the low Reλ of the DNS. Such a condition characterizes the viscous–
buoyant state (VBS). However, by time Nt = 4.24 (figure 18c), inertial effects are
almost negligible and nearly all the points on the diagram exhibit GrS <Grcr

S . Such
an observation suggests that all remaining overturning motions have established a
VBS (with overturns with 2LT s < 0.05 upon collapse attaining a VBS at even lower
Grcr

S ) the initiation of which was predicted according to the lump model (Appendix B)
to occur no later than Nt ≈ 2.3. Beyond this point, according to the detailed similarity
solution of Chen (1980), the overturn height drops very slowly with roughly a
t−1/5 power law, due to the retarding action of viscosity, which justifies the nearly
constant value of 〈LT 〉 ≈ 0.015 in the final stage of flow evolution (figure 7a). If
one calculates the non-dimensional value of td during this stage it is found that
td ≈ 〈LT 〉2ReLP r/S ≈ 3.66S−1 → Ntd ≈ 2.58 and is nearly equal to the duration of this
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Figure 17. Activity (FrS vs. ReS) diagrams of one-dimensional overturning segments. (a)
Run RS1, time Nt = 0.45 (St =2); (b) Run RS1, time Nt = 1.8 (St =8); (c) Run RUS1, time
Nt =0.45; (d) Run RUS1, time Nt =1.8. The critical values of ReS and FrS are drawn on the
diagrams. Each symbol on the activity diagrams represents a separate overturning segment in
the vertical profiles sampled. See caption for figure 18 for apparent cut-off in the upper left
quadrant.

interval of constant 〈LT 〉. Note that this constant 〈LT 〉 is evidently what KVA regard
as a ‘viscous cut-off’ below which overturning cannot occur due to viscosity.

A scenario may now be constructed for the late stage of overturn evolution:
gravitational collapse has been instigated at the larger scales of the internally well-
mixed overturn which eventually attains a VBS (the occurrence time, tBν , and critical
lengthscale, LBν , of which depend on the overturn height at the initiation of collapse)
and the isopycnals are gradually locked in position (see Appendix B) so that the
overturn maintains a constant vertical length. Owing to the small scales of these
events, diffusion can act rapidly and homogenize their interior as they vanish into the
ambient density field. The overturns that survive later than the others are likely to
originate from larger initial patches with higher values of tBν and LBν as suggested by
equation (B 3). The above analysis explains the observations made in § 3.2 and § 3.4
of the eventual drop in volume fraction of overturns, their relative constant vertical
extent and the diffuse character of the density field within them. Similar behaviour
was observed for the patch data of run RUS3, though the volume fraction of patches
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Figure 18. Activity (FrS vs. ReS) diagrams of one-dimensional overturning segments. (a)
Run RS3, time Nt =1.41 (St =2); (b) Run RS3, time Nt = 2.82 (St =4); (c) Run RS3, time
Nt = 4.24; (St =6); (d) Run RS3, time Nt =5.68 (St =8). The critical values of ReS and FrS

are drawn on the diagrams. The lines GrS = 400 and 1200 denote the approximate interval
of VBS establishment within an overturn. Each symbol on the activity diagrams represents a
separate overturning segment in the vertical profiles sampled. The hard cut-off at Gr ≈ O(1)
corresponds to the smallest overturns sampled, where g′ = N2LTS

and GrS is simply a function
of LTS

.

diminishes much faster as the turbulence has no energy source (i.e. the mean shear)
that would sustain it and allow the generation of a greater number of overturns. Note
that run RUS1, despite the signs of some partial overturn collapse (figure 7a), is not
characterized by a VBS phase before the end of the simulation, because tBν occurs
much later due to the lower N and higher overturn height at the time of collapse
instigation.

The skewness parameter of LT s (Teoh et al. 1997) was calculated for all overturn
segment datasets considered in this section and was found to fluctuate in the range
[0.9, 1.3]. Thus, LT s for all DNS overturn segments is moderately skewed toward
values above its mean. However, the magnitude and variation of the skewness is
significantly lower than those observed in the experiments of Teoh et al. (1997). There
is also clearly no correlation between skewness and the distribution of points on the
ReS , FrS diagram.
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As already mentioned, the use of dissipation-range scaling in the above analysis
is valid because overturning is generated by dissipation-range coherent vortex tubes
(see § 4.1) and no inertial range is present due to the low Reλ of the DNS. In the case
of Reλ high enough to be characterized by a prominent inertial range, dissipation-
range scaling is not applicable. The largest overturns in the flow are then believed
to be generated by the larger inertial-range scales of turbulence and inertial-range
Kolmogorov scaling should be used in the definition of the advective timescale ta . FrS

and ReS would then be equivalent to the turbulent Froude number, Frt , and Reynolds
number, Ret , respectively of Ivey & Imberger (1991).

The activity diagrams along with the analysis given in this section indicate that
the overturn population at a given instant in the DNS data exhibits a fairly broad
range of ReS and FrS values, varying by up to two orders of magnitude (as in the
energetic flow of RS1 in figure 17a), a range of values which can be even more
extensive in higher-Reλ flows (see Diamessis 2001, and § 5.2). Thus, caution may be
warranted when relying on information obtained from a single vertical measurement.
The general trend of ReS and FrS values is dictated by the stage of flow evolution and
the values of Fr and Ri. Although viscosity is always non-negligible in this low-Reλ
DNS, the activity diagrams along with a collapsing well-mixed lump model provide
a more complete description of the final phase of overturn evolution and clarify
conjectures made by KVA (overturn size vs. number and the possibility of a viscous
cut-off for overturning) with regard to this phase.

5.2. Higher-Reλ behaviour

As noted in § 2, computational limitations restricted this work to a relatively low value
of initial Reλ and Pr. Several questions arise. How does the DNS under consideration
differ from existing DNS of higher Reλ? Is it possible to use the DNS results to
extrapolate the behaviour of stratified oceanic turbulence?

Results from DNS of stratified homogeneous sheared turbulence at the same
resolution (1283) obtained via a Fourier-spectral calculation, which allows greater
accuracy and thereby initial Reλ ≈ 90 (Shih et al. 2000), have been analysed and
are examined in greater detail elsewhere (Diamessis 2001). The analysis indicates
qualitatively similar results with the present initial Reλ = 20 dataset, the key difference
being the slightly enhanced inertial force effects due to the more energetic initial
turbulence (e.g. an increase in one order of magnitude in the observed maximum
ReS values). The absence of an inertial range, which may appreciably alter overturn
dynamics, explains this qualitative similarity with an even higher Reλ.

Regarding the second question, any attempt to extend the DNS results to oceanic
turbulence should be made very cautiously as it is doubtful if the current DNS of
stratified homogeneous turbulence of low Reλ at Pr = O(1) represents its oceanic
counterpart for which maximum overturn lengthscales are of O(1 m) or greater,
Reλ ≈ O(103) and Pr ≈ O(102). Although the VBS may correspond to Gibson’s
definition of fossil turbulence (Gibson 1991), because viscosity and buoyancy have
dominated the overturn-generating inertial forces of the turbulence, it is highly unlikely
that it will occur in the ocean because the overturn interior upon collapse would have
a much less well-mixed interior than in the Pr ≈ O(1) case. One may also wonder
if the overturn-generating dissipation-range vortical structures discussed in § 4.1 are
relevant in oceanic turbulence. For a flow with an inertial range of at least a couple of
decades, conditions unattainable by current DNS, other overturn-inducing structures
associated with these larger scales may be present. In the ocean, with the exception of
highly energetic boundary regions, the energy spectra of observed overturns usually
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exhibit a very limited inertial range (Gregg 1987). However, the dissipation-range
characteristic vortex tubes are not likely to play a significant role in the dynamics of
these overturns. Unlike the DNS with its limited range of scales, oceanic turbulence is
still characterized by significant scale separation. A restricted or non-existent inertial
range appears because low to moderate wavenumber activity is heavily influenced by
buoyancy effects.

The picture of overturn dynamics at oceanic Reλ remains far from complete.
Although the recent stratified shear layer DNS by Smyth & Moum (2000) and
Smyth et al. (2001) have provided invaluable insight into the dynamics of stratified
turbulent overturns, their simulations touch upon only the lower end of the range
of reported oceanic Reλ. Once the necessary numerical/modelling methodologies
and computational resources become available, the simulation of even higher-Reλ
stratified turbulence is imperative to investigate the delicate interplay between inertia
and buoyancy in oceanic overturn dynamics throughout the different phases of their
evolution.

6. Summary and conclusions
The structure and dynamics of overturns in stratified homogeneous turbulence are

examined by utilizing full-field information from DNS. Here, overturns are defined
through the density field as contiguous regions of non-zero Thorpe displacement. The
effects of varying degrees of stratification and the presence of a background shear are
considered. Although the DNS is limited to relatively low Reynolds number flows,
the flow conditions (with shear) are comparable with those of KVA. Issues arising
from the work of KVA are addressed and a more complete description in terms
of the three-dimensional structure, dynamical evolution and energetic significance
of overturns is developed. Results provide insight for the interpretation of physical
measurements, typically limited to one-dimensional vertical profiles.

The three-dimensional structure of overturns is educed by extending the one-
dimensional Thorpe method to three dimensions and visualizing contiguous regions
with non-zero Thorpe displacement. The structure and its development are examined
at the different phases of evolution. Overturns are initially generated by the stirring
action of intense tube-like vortex structures which wrap the isopycnals around
their cores thereby establishing gravitationally unstable regions. The overturns
develop further through merging with adjacent overturns. During this growth phase,
corresponding to increasing 〈LT 〉, overturns exhibit irregular spatial structure in
unsheared flow and elongated structure with distinct orientation in shear flow. In
the latter case, the preferential orientation of the vortex structures and associated
prevalence of horizontal vorticity enhances the generation of overturns. This
directional bias along with mean flow advection result in a distinct streamwise
elongation and an orientation inclined from the horizontal in the corresponding
overturns. These results elaborate on the description proposed by KVA which
consisted of vertically advected lumps of fluid displacing localized stable temperature
fronts. A collapse phase may follow the growth phase and occurs in the absence of
sufficiently strong shear as buoyancy begins to control the larger scales of overturning
motion. This phase is associated with decreasing 〈LT 〉. During the final phase of
evolution, consistent with KVA’s findings, 〈LT 〉 does not rapidly drop to zero but
maintains a constant value for some period of time after the onset of collapse, as the
number of overturns becomes progressively smaller. The overturns eventually vanish
due to homogenization of their internal density distribution by diffusion.
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The contribution of overturns to the energetics is determined through conditional
statistics and direct inspection of visualizations of overturns and quantities associated
with the turbulent kinetic energy (TKE) and available potential energy (APE) budgets.
In general, the interiors of overturns are not, directly, a major contributor to the overall
TKE and APE budgets of the flow. Results show that most of the APE in the flow
comes from non-overturn (gravitationally stable) regions. It is found that the levels
of TKE, turbulence production, buoyancy flux, and TKE dissipation rates in the
overturn interiors scale with their volume fraction. Further investigation would be
required for a more quantitative evaluation of the contributions of overturns versus
that of non-overturn regions, with respect to the above quantities. However, the levels
of APE in the overturn interior and periphery are signficantly higher than in the rest
of the flow. In addition, strong buoyancy flux and the highest diapycnal mixing occur
at the overturn peripheries. Overturns may therefore be considered active sites for
stirring and mixing. This observation is especially evident during the growth phase
when young overturns are being established. The stirring motion of the underlying
vortex structures establishes high strain regions which amplifies local density gradients.
Furthermore, the rotational motion is effective in establishing high APE. High TKE
dissipation rates do not occur in overturns because they are associated with non-
overturning vortex sheets. During the collapse phase, the energetic significance of over-
turns diminishes although high APE and diapycnal flux are still observed at the
overturn peripheries. The overturn interiors appear to make a negligible contribution
to negative buoyancy flux associated with restratification. At the late stage of evolution
in which 〈LT 〉 attains a constant value, the energetic contribution of overturns is
negligible. Some weak diapycnal mixing occurs in the ‘frozen’ isopycnal perturbations
in non-overturning parts of the flow. However, without turbulent overturning and the
associated stirring and straining, strong diapycnal mixing does not occur.

Further analysis is performed using activity diagrams to identify the prevalent
dynamical processes in the overturn population. In this case, the data are examined in
terms of one-dimensional profiles and the corresponding overturn segments. Activity
diagrams sampled at different phases of flow evolution indicate a fairly broad range
of overturn segment Reynolds and Froude numbers. Such a wide spread of values
corroborates the need for multiple vertical profiling of a turbulent event to ensure
representative sampling. The relatively low overturn segment Reynolds numbers
illustrate the significant role of viscosity in these low Reynolds number simulations.
The dynamics of the final phase of overturn evolution are described by a model
for an axisymmetrically collapsing well-mixed lump of fluid which suggests that the
collapsing overturn gradually attains a critical Grashof number and thus a viscous–
buoyant state (VBS), thus explaining the observations of late-time constant 〈LT 〉.
Diffusion-induced velocities operate on a timescale comparable to the duration of the
VBS phase and act to annihilate all remaining overturns through homogenization of
their internal density field.

This work was motivated to a great extent by the wind-tunnel studies of Kurt Keller.
We are grateful to him for abundant insight and discussion. Special thanks are due to
Carl Gibson, Greg Ivey and Jim Rottman for invaluable comments and suggestions.
We would like to note that C.G. provided the basic arguments for the derivation of
Recr

S and G.I. recommended the Chen reference on the collapsing lump model. We
are also grateful to Colm Caulfield, Sutanu Sarkar, Paul Linden, Rob Pinkel, George
Carnevale, Larry Armi, Bill Smyth, Geoff Spedding, Andrzej Domaradzki and Adam
Fincham for many useful discussions. The high-Reλ datasets discussed in § 5.2 were
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Appendix A. Non-dimensional energy budget equations
In this section, the evolution equations for the turbulent kinetic energy (TKE) and

available potential energy (APE) in a stably stratified homogeneous turbulent flow
are presented. All primed quantities denote their fluctuating component with respect
to the corresponding spatial mean values. Non-dimensionalization is performed using
the reference values given in § 2.

The TKE, denoted by Ek , of a fluid volume V is defined as

Ek = 0.5

∫
V

(u′2 + v′2 + w′2) dV. (A 1)

The general evolution equation of the TKE is given in Winters et al. (1995). For the
case of stably stratified homogeneous turbulence, it can be written in non-dimensional
form as

dEk

dt
= −S

∫
V

u′w′ dV︸ ︷︷ ︸
P

− Ri

∫
V

w′ρ ′ dV︸ ︷︷ ︸
Φz

− 1

ReL

∫
V

∂u′
i

∂xk

∂u′
i

∂xk

dV︸ ︷︷ ︸
ε

, (A 2)

where the term P is the production of TKE through the mean shear, Φz is the
buoyancy flux and ε the integral of the TKE dissipation rate over the fluid volume V

(written in tensor notation for brevity).
The APE, Ea , of the flow is the fraction of its total potential energy available

for conversion to kinetic energy. The APE of a fluid volume V is defined in non-
dimensional form as

Ea = Ri

∫
V

ρ · (z − z∗) dV, (A 3)

where z∗ is the position of a fluid parcel in the background state of potential energy
(BSPE), the state of minimum potential energy attained by the fluid at a given instant
if allowed to restratify adiabatically (Winters et al. 1995; Winters & D’Asaro 1996;
Peltier & Caulfield 2003). The total potential energy is thus the sum of the APE and
the background potential energy associated with the BSPE. The general form of the
APE budget can be found in Winters et al. (1995). For the case of stably stratified
homogeneous turbulence, the non-dimensional representation is

dEa

dt
= Ri

∫
V

w′ρ ′ dV︸ ︷︷ ︸
Φz

− Ri

Sc ReL

∫
V

(∇ρ)2(−dρ/dz∗)
−1 dV︸ ︷︷ ︸

Φd

+
Ri

Sc ReL︸ ︷︷ ︸
Φi

, (A 4)

where Φz has already been defined, Φd is the diapycnal flux and Φi the mean
molecular flux of mass across V , which is constant for a linear mean density gradient.
Φd represents the irreversible loss of APE due to molecular mixing across isopycnal
surfaces (Winters & D’Asaro 1996).

For a numerical simulation dataset the BSPE can be obtained either through
volume-sorting the density field (Winters et al. 1995) or from the p.d.f. of the
density (Tseng & Ferziger 2001). In the case of DNS of homogeneous stratified
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turbulence where dρ/dz is fixed in time, the BSPE remains unchanged and equal
to the value corresponding to initial mean uniform stable density stratification. In
field observations or experimental data, a limited set of vertical density profiles is
available. One then has to separately re-sort each of the individual profiles to obtain
an estimate of the BSPE (Thorpe 1977; Dillon 1984; Itsweire et al. 1993; Winters &
D’Asaro 1996).

Appendix B. Critical values of the segment non-dimensional parameters
In this section, critical values are derived for the non-dimensional parameters of

an overturn segment used in § 5.1, where the regimes of behaviour above and below
each critical value are discussed in greater detail.

Segment Froude number, FrS: In the low-Reλ regime, overturning is driven by small-
scale dissipation-range coherent vortex tubes (see § 4.1). Dissipation-range scaling may
then be used for ωHs (defined in § 5.1) within an overturning segment:

ωHs ≈ (εs/ν)1/2, (B 1)

where εs is the dissipation rate averaged over the length of the segment. Thus,
small-scale turbulence overturns and strains the density field over the same timescale.
Through equation (B 1) and tg ≈ N−1, FrS can be related to the small-scale Froude
number, Frγ , of Ivey & Imberger (1991) and Imberger (1994),

FrS ≈
[

εs

νN2

]1/2

= Frγ . (B 2)

Note that for all the DNS datasets, FrS ≈ Frγ is satisfied to an excellent degree.
A critical value of Frcr

γ = 3.9 was obtained by Ivey & Imberger (1991) for the
experimental observations of Stillinger et al. (1983), Itsweire et al. (1986) and Rohr
et al. (1988). Thus, the critical value for FrS is Frcr

S = 3.9.
Segment Reynolds number, ReS: Because overturning in the DNS is driven by

dissipation-range coherent structures (se § 4.1), it is reasonable to speculate that the
process of an overturning motion overcoming viscosity is analogous to that of a small-
scale motion overcoming the confines of the viscous boundary layer. To overcome
viscosity in the boundary layer, any small-scale motion must exhibit a velocity u � 5u∗

and lengthscale L � 5L∗ where u∗ and L∗ are the friction velocity and viscous scale,
respectively (Kundu 2002), both of which can be shown to be approximately equal to
the corresponding Kolmogorov scales. Thus, a critical value of Recr

S = uL/ν = 25 is
readily obtained and used to characterize overturn segment dynamics.

Segment Grashof number, GrS: A critical value of Grcr
S may be determined by

considering a simple conceptual model proposed by Chen (1980) and some of the
kinematic observations made in § 3.2 and § 3.4. Using an analysis similar to but more
detailed than Huppert (1982) (who only considered a homogeneous background
density field for a viscous gravity current), Chen (1980) investigated theoretically
and experimentally the instantaneous release of a volume-conserving immiscible well-
mixed lump of fluid in a linear stratification for a variety of initial lump geometries.
Figure 5(a) shows a typical late-time overturning region with a well-mixed interior
which is most likely to have originated from the collapse of a larger, non-turbulent,
fairly well-mixed overturn (such as the one located at (y, z) = (0.25, 0.35) in figure 4b).
One is thus motivated to apply Chen’s analysis results to the DNS data. It is not
unreasonable to then consider the collapsing overturns to initially have the idealized
topology of well-mixed spherical lumps (figure 16b) undergoing an axisymmetric
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collapse. Such an assumption should be acceptable even for the DNS flow with
uniform background shear, as the linear U (z) profile (not subject to instabilities) and
the weak turbulence during collapse prevent the shear from making any significant
dynamical contribution to overturn evolution. The shear simply has a geometric effect
by deforming the collapsing overturn. However, in overturn boundary animations (not
shown), no extreme patch distortions were observed (such as to cause splitting or
shredding of a patch) during collapse that would invalidate use of the collapsing lump
model. The initial spherical lump geometry is the most general choice, and although
more complex geometries are discussed in Chen (1980), they are outside the scope of
this work. To allow the direct substitution of the data of figure 7(a), non-dimensional
equations (according to the non-dimensionalization of § 2) in terms of Ri and ReL

are used. In the DNS simulations, the computational-domain Reynolds number,
ReL = �UL/ν (or UL/ν) is equal to 23 256. In the following, when considering the
unsheared runs, Ri should be replaced with (NL/U )2. According to Chen (1980), the
lump collapse is initially dominated by inertia/buoyancy and gradually transitions
into a state where buoyancy is countered by viscosity to an increasing degree (which
is manifested in the locking of isopycnal surfaces discussed in § 5.1). This viscous–
buoyant state (VBS) occurs at a time tBν after initiation of collapse, at a lump
horizontal radius RBν and height LBν =2hBν given by

tBν ≈ αt

[
V 2

0 Re3
L

Ri2

]1/7

, RBν ≈ αR

(
V 3

0 Ri1/2ReL

)1/7
, LBν ≈ 3

2πα2
R

[
V0

RiRe2
L

]1/7

(B 3)

respectively, where V0 = 4πR3
0/3 is the initial volume of the lump and αt = 0.0469

and αR =0.407. The height of the lump, LBν , is calculated assuming it remains an
ellipsoid with uniform horizontal radius RBν throughout the collapse and conserves
its volume. For runs RS3 and RUS3, collapse begins at Ntc ≈ 2 (figure 7a). Diamessis
(2001) shows that the height of a three-dimensional overturning patch upon onset of
collapse at Fr =0.58 is equal to its average Thorpe scale multiplied by a factor of
approximately 2. Consequently, at Ntc ≈ 2 with 〈LT 〉 ≈ 0.025 (figure 7a), the average
initial lump height can be assumed to be L0 = 2R0 ≈ 0.05. For such a value of L0 one
can calculate tBν and show that the VBS begins at times N (tc + tBν) ≈ 2.3. The rapid
appearance of the VBS in the collapse process can be justified by the small vertical
scale of the overturns (less than 1 cm high when dimensionalized according to the
KVA data, which was restricted to the central 15 cm of their wind tunnel). Using
the last of equations (B 3), the value of L0 indicated above and g′ ≈ N 2L one finds
that Grcr

S ≈ 1200 upon the onset of the VBS. Note that this Grcr
S is dependent on the

value of L0. An overturn with L0 half the above value exhibits Grcr
S ≈ 400. Thus, the

L0-dependent Grcr
S is likely to fall in the interval [400, 1200].

The above critical Gr may be constrasted to the critical values obtained by Barry
(2002) for different DNS and experimental data. The latter span a range of values from
2 to 2 × 105 but describe a totally different phenomenon, that of a turbulent overturn
in which the turbulence operates in such a way that the viscous diffusion timescale of
momentum within the overturn is kept proportionate to the corresponding large-eddy
turnover time. In contrast, the Grcr

S ∈ [400, 1200] of this study describes locally a
laminar flow at the final stages of overturn evolution.

REFERENCES

Barry, M. E. 2002 Mixing in stratified turbulence. PhD Dissertation, Dept. of Environmental
Engineering, U. Western Australia.



228 P. J. Diamessis and K. K. Nomura

Chen, J. C. 1980 Studies on gravitational spreading currents. Tech. Rep. KH-R-40. California
Institute of Technology, Pasadena.

Diamessis, P. J. 2001 An investigation of vortical structures and density overturns in stably
stratified homogeneous turbulence by means of direct numerical simulation. PhD Dissertation,
University of California, San Diego.

Diamessis, P. J., Kerney, W. R., Baden, S. B. & Nomura, K. K. 2002 Automated tracking of 3-d
overturn patches in direct numerical simulations of stratified turbulence. In Applied Parallel
Computing, 6th Intl Conf, Helsinki, Finland (ed. J. Fagerholm). Lecture Notes in Computer
Science, vol. 2367, pp. 557–566. Springer.

Diamessis, P. J. & Nomura, K. K. 1999 Interaction of vorticity, rate of strain, and scalar gradient in
stably stratified homogeneous sheared turbulence. In Turbulence and Shear Flow Phenomena –
First Intl Symposium, Santa Barbara, California, pp. 715–720.

Diamessis, P. J. & Nomura, K. K. 2000 Interaction of vorticity, rate-of-strain and scalar gradient
in stratified homogeneous sheared turbulence. Phys. Fluids 12, 1166–1188.

Dillon, T. M. 1982 Vertical overturns: A comparison of thorpe and ozmidov length scales.
J. Geophys. Res. 87, 9601–9613.

Dillon, T. M. 1984 The energetics of overturning structures: Implications for the theory of fossil
turbulence. J. Phys. Oceanogr. 14, 541–549.

Dommermuth, D. G., Rottman, J. W., Innis, G. E. & Novikov, E. A. 2002 Numerical simulation
of the wake of a towed sphere in a weakly stratified fluid. J. Fluid Mech. 473, 83–101.

Gerz, T., Howell, J. & Mahrt, L. 1994 Vortex structures and microfronts. Phys. Fluids 6, 1242–
1251.

Gerz, T. & Schumann, U. 1989a In Finite Approximations in Fluid Mechanics, Part 2 (ed. E.
Hirschel) pp. 142–155. Vieweg.

Gerz, T. & Schumann, U. 1989b Length scales of sheared and unsheared stratified homogeneous
turbulence deduced from direct simulations. In Seventh Symp. on Turbulent Shear Flows,
Stanford, USA.

Gerz, T., Schumann, U. & Elghobashi, S. 1989 Direct simulation of stably stratified homogeneous
turbulent shear flows. J. Fluid Mech. 200, 563–594.

Gibson, C. H. 1980 Fossil temperature, salinity and vorticity in the ocean. In Marine Turbulence
(ed. J. C. T. Nihoul), pp. 221–258. Elsevier.

Gibson, C. H. 1986 Internal waves, fossil turbulence and composite ocean microstructure spectra.
J. Fluid Mech. 168, 89–117.

Gibson, C. H. 1991 Laboratory, numerical and oceanic fossil turbulence in rotating and stratified
flows. J. Geophys. Res. 96, 12549–12566.

Gibson, C. H., Ashurst, W. T. & Kerstein, A. R. 1988 Mixing of strongly diffusive passive scalars
like temperature by turbulence. J. Fluid Mech. 194, 261.

Gregg, M. C. 1987 Diapycnal mixing in the thermocline. J. Geophys. Res. 92, 5249–5286.

Gregg, M. C. & Sanford, T. B. 1988 The dependence of turbulent dissipation on stratification in
a diffusively stable thermocline. J. Geophys. Res. 93, 12381–12392.

Hebert, D., Moum, J. N., Paulson, C. A. & Caldwell, D. R. 1992 Turbulence and internal waves
at the equator, part ii: Details of a single event. J. Phys. Oceanogr. 22, 1346–1356.

Holt, S. E., Koseff, J. R. & Ferziger, J. H. 1992 A numerical study of the evolution and structure
of homogeneous stably stratified sheared turbulence. J. Fluid Mech. 237, 499–539.

Huppert, H. E. 1982 The propagation of two-dimensional and axisymmetric viscous gravity currents
over a rigid horizontal surface. J. Fluid Mech. 121, 43–58.

Imberger, J. 1994 Transport processes in lakes: review. In Limnology Now: A Paradigm of Planetary
Problems (ed. R. Margalef), pp. 99–193. Elsevier.

Imberger, J. & Ivey, G. N. 1991 On the nature of turbulence in a stratified fluid. Part II: Application
to lakes. J. Phys. Oceanogr. 21, 659–680.

Itsweire, E. 1984 Measurements of vertical overturns in a stably stratified flow. Phys. Fluids 27,
764–766.

Itsweire, E., Helland, K. & Van Atta, C. 1986 The evolution of grid-generated turbulence in a
stably stratified fluid. J. Fluid Mech. 162, 299–338.

Itsweire, E., Koseff, J., Briggs, D. & Ferziger, J. H. 1993 Turbulence in stratified shear flows:
Implications for interpreting shear-induced mixing in the ocean. J. Phys. Oceanogr. 23, 1508–
1522.



Overturns in stably stratified homogeneous turbulence 229

Ivey, G. N. & Imberger, J. 1991 On the nature of turbulence in a stratified fluid. Part I: The
energetics of mixing. J. Phys. Oceanogr. 21, 650–658.

Jacobitz, F. & Sarkar, S. 1999 On the shear number effect in stratified shear flow. Theor. Comput.
Fluid Dyn. 13, 171–188.

Jacobitz, F., Sarkar, S. & Van Atta, C. 1997 Direct numerical simulations of the turbulence
evolution in a uniformly sheared and stably stratified flow. J. Fluid Mech. 342, 231–261.

Keller, K. H. & Van Atta, C. W. 2000 An experimental investigation into the vertical temperature
structure of homogeneous stratified shear turbulence. J. Fluid Mech. 425, 1–29 (referred to
herein as KVA).

Kundu, P. K. 2002 Fluid Mechanics. Academic.

Metais, O. & Herring, J. R. 1989 Numerical simulations of freely evolving turbulence. J. Fluid
Mech. 202, 117–148.

Moum, J. N. 1996 Energy-containing scales of turbulence in the ocean thermocline. J. Geophys. Res.
101, 14095–14109.

Nomura, K. K. & Diamessis, P. J. 2000 The interaction of vorticity and rate of strain in homogeneous
sheared turbulence. Phys. Fluids 12, 846–64.

Nomura, K. K. & Elghobashi, S. E. 1992 Mixing characteristics of an inhomogeneous scalar in
isotropic and homogeneous sheared turbulence. Phys. Fluids A 4, 606–625.

Nomura, K. K. & Post, G. K. 1998 The structure and dynamics of vorticity and rate of strain in
incompressible homogeneous turbulence. J. Fluid Mech. 377, 65–97.

Peltier, W. R. & Caulfield, C. P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid
Mech. 35, 135–167.

Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.

Riley, J. J., Metcalf, R. W. & Weissman, M. A. 1981 Direct numerical simulations of turbulence in
homogeneously stratified fluids. In Non-linear Properties of Internal Waves, pp. 79–112. AIP.

Rohr, J. J., Itsweire, E. C., Helland, K. N. & Van Atta, C. W. 1988 Growth and decay of
turbulence in a stably stratified shear flow. J. Fluid Mech. 195, 77–111.

Saggio, A. & Imberger, J. 2001 Mixing and turbulent fluxes in the metalimnion of a stratified lake.
Limnol. Oceanogr. 46, 392–409.

Shih, L. H., Koseff, J. R., Ferziger, J. H. & Rehmann, C. R. 2000 Scaling and parameterization
of stratified homogeneous turbulent shear flow. J. Fluid Mech. 412, 1–20.

Smyth, W. D. & Moum, J. N. 2000 Length scales of turbulence in stably stratified mixing layers.
Phys. Fluids 12, 1327–1342.

Smyth, W. D., Moum, J. N. & Caldwell, D. R. 2001 The efficiency of mixing in turbulent patches:
inferences from direct simulations and microstructure observations. J. Phys. Oceanogr. 31,
1969–1992.

Stillinger, D. C., Helland, K. H. & Van Atta, C. W. 1983 Experiments on the transition of
homogeneous turbulence to internal waves in a stratified fluid. J. Fluid Mech. 131, 91–122.

Teoh, S. G., Ivey, G. N. & Imberger, J. 1997 Laboratory study of the interaction between two
internal wave rays. J. Fluid Mech. 336, 91–122.

Thorpe, S. A. 1977 Turbulence and mixing in a scottish loch. Phil. Trans. R. Soc. Lond. A 286,
125–181.

Tseng, Y. H. & Ferziger, J. H. 2001 Mixing and available potential energy in stratified flows. Phys.
Fluids 13, 1281–1293.

Winters, K. B. & D’Asaro, E. A. 1996 Diascalar flux and the rate of fluid mixing. J. Fluid Mech.
317, 179–193.

Winters, K. B., Lombard, P. N., Riley, J. J. & D’Asaro, E. A. 1995 Available potential energy and
mixing in density stratified fluids. J. Fluid Mech. 289, 115–128.


